Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[bis(thiocyanato-κN)zinc(II)]-μ-1,4-bis(1,2,4-triazol-1-yl)butane]

Liang Shen

College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, People's Republic of China Correspondence e-mail: shenchem@hotmail.com

Received 11 October 2007; accepted 17 October 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.034; *wR* factor = 0.132; data-to-parameter ratio = 19.4.

The structure of the title complex, $[Zn(NCS)_2(C_8H_{12}N_6)]_n$, exhibits a one-dimensional zigzag chain through a 1,4bis(1,2,4-triazol-1-yl)butane bridge, in which the Zn^{II} atom, lying on a twofold rotation axis, is in a distorted tetrahedral environment formed by two N atoms of the triazoles and two N atoms from two thiocyanate ligands.

Related literature

For related literature, see: Gromova et al. (2000); Li et al. (2006); Liu et al. (2006).

Experimental

Crystal data [Zn(NCS)₂(C₈H₁₂N₆)] $M_r = 373.76$ Monoclinic, C2/c a = 15.1950 (9) Å b = 5.8261 (2) Å c = 18.8040 (7) Å $\beta = 100.893$ (2)°

 $V = 1634.68 (13) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 1.76 \text{ mm}^{-1}$ T = 298 (1) K $0.38 \times 0.28 \times 0.11 \text{ mm}$ $R_{\rm int} = 0.049$

7229 measured reflections

1867 independent reflections 1473 reflections with $F^2 > 2\sigma(F^2)$

Data collection

```
Rigaku R-AXIS RAPID
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
T_{min} = 0.515, T_{max} = 0.824
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	96 parameters
$wR(F^2) = 0.132$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
1867 reflections	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Zn1-N1	2.017 (2)	Zn1-N4	1.934 (3)
$N1-Zn1-N1^{i}$	102.75 (8)	N1-Zn1-N4 ⁱ	109.46 (10)
N1-Zn1-N4	108.35 (10)	$N4-Zn1-N4^{i}$	117.45 (13)

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2004); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *CrystalStructure*.

We express our gratitude to the Zhejiang Provincial Natural Science Foundation of China for financial support through project No. M203077

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2425).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. L., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gromova, S. A., Barmin, M. I., Korolev, E. A. & Mel'nikov, V. V. (2000). *Russ. J. Org. Chem.* **36**, 1205–1206.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Li, B.-Z., Liu, X.-G., Wang, Z.-H., Li, B.-L. & Zhang, Y. (2006). Acta Cryst. C62. m10-m12.
- Liu, X., Ge, H.-Y., Zhang, Y.-M., Hu, L., Li, B.-L. & Zhang, Y. (2006). J. Mol. Struct. 796, 129–138.
- Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Version 3.7.0. Rigaku/MSC, The Woodlands, Texas, USA.

supplementary materials

Acta Cryst. (2007). E63, m3045 [doi:10.1107/81600536807051239]

catena-Poly[[bis(thiocyanato- κN)zinc(II)]- μ -1,4-bis(1,2,4-triazol-1-yl)butane]

L. Shen

Comment

Recently a new class of flexible ligands, [bis(1,2,4-triazol-1-yl)-alkanes], have been found to be very effective in the formation of various interesting extended structures. As bridging ligands, these 1,2,4-triazole derivatives show a great coordination diversity. Among these ligands, 1,4-bis(1,2,4-triazol-1-yl)butane(btb), with a appropriate length between two hetercyclic donors, is expected to play an important role in the construction of transition-metal supramolecular structures. To our knowledge, there are a few reports on the crystal structures of manganese(II) and cadmium(II) complexes with bridging 1,4-bis(1,2,4-triazol-1-yl)butane ligand [Li *et al.*, 2006; Liu *et al.*, 2006]. As part of our investigations of the coordination mode of the ligand in metal complexes incorporating 1,2,4-triazole derivatives, we here report the synthesis and crystal structure of a new polymeric Zn(II) with btb bridges.

The molecular structure of the title complex, with the atom-numbering scheme, is shown in Fig. 1. The Zn(II) atoms are surrounded by two triazoles and two NCS– ions, forming a distorted tetrahedral geometry. The Zn—N bond distances of btb [2.017 (2) Å] are slightly longer than the Zn—N from NCS [1.934 (3) Å]. The N—Zn—N angles around Zn centers range from 102.75 (8)^o to 117.45 (13)^o. The Zn—N—C angles are 176.8 (3)^o, which deviating from 180° expected for *sp* hybrid orbital of the N atom. The NCS group is almost linear with a N(4)—C(5)—S(1) angle of 177.0 (3)^o. The C—N distances [1.143 (4) Å] and C—S distances [1.610 (3) Å] in the SCN moiety show the normal structure of the thiocyanate in the complex.

As shown in Fig. 2, the Zn(II) ions are linked by btb ligands, building up coordination polymers to one-dimensional zigzag chain. The btb ligand adopts an anti-*gauche* conformation in this complex.

Experimental

1,4-Bis(1,2,4-triazol-1-yl)butane (btb) was prepared according to literature method (Gromova *et al.*, 2000). A 15 mL me thanol of $ZnCl_2(0.136 \text{ g}, 1 \text{ mmol})$ was added to a 15 ml me thanol of KSCN (0.348 g, 2 mmol). The resulting precipitate of KCl was filtered off. A 15 ml aqueous solution of btb (0.192 g, 1 mmol) was added to the above filtrate. The reaction mixture was stirred at reflux temperature for 2 h. The colourless single crystals of the title complex were obtained by evaporating the reaction solution at room temperature for one week.

Refinement

The H atoms were placed in a calculated positions, with C—H = 0.93 or 0.97 Å. All H atoms were included in the final cycle of refinement in riding mode, with $U_{iso}(H) = 1.2U_{eq}(C,N,O)$.

Figures

Fig. 1. Molecular structure showing 50% probability displacement ellipsoids.

Fig. 2. The extended structure of the title complex.

catena-Poly[[bis(thiocyanato-кN)zinc(II)]-µ-1,4-bis(1,2,4-triazol-1- yl)butane]

Crystal data	
$[Zn(NCS)_2(C_8H_{12}N_6)]$	$F_{000} = 760.00$
$M_r = 373.76$	$D_{\rm x} = 1.519 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å
Hall symbol: -C 2yc	Cell parameters from 5666 reflections
a = 15.1950 (9) Å	$\theta = 4.0-27.4^{\circ}$
b = 5.8261 (2) Å	$\mu = 1.76 \text{ mm}^{-1}$
c = 18.8040 (7) Å	T = 298 (1) K
$\beta = 100.893 \ (2)^{\circ}$	Platelet, colourless
$V = 1634.68 (13) \text{ Å}^3$	$0.38\times0.28\times0.11~mm$
Z = 4	

Data collection

Rigaku R-AXIS RAPID diffractometer	1473 reflections with $F^2 > 2\sigma(F^2)$
Detector resolution: 10.00 pixels mm ⁻¹	$R_{\rm int} = 0.049$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -19 \rightarrow 19$
$T_{\min} = 0.515, T_{\max} = 0.824$	$k = -7 \rightarrow 7$
7229 measured reflections	<i>l</i> = −24→23
1867 independent reflections	

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.034$	$w = 1/[0.002F_0^2 + \sigma(F_0^2)]/(4F_0^2)$
$wR(F^2) = 0.132$	$(\Delta/\sigma)_{max} < 0.001$
S = 1.00	$\Delta \rho_{\text{max}} = 0.50 \text{ e} \text{ Å}^{-3}$
1867 reflections	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$
96 parameters	Extinction correction: none

Special details

Zn1—N4ⁱ

Refinement. Refinement using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Zn1	0.5000	0 23651 (
		0.23031 (6) 0.750	00 0	0.04427 (14)	
S1	0.38748 (10)	-0.21390	(18) 0.918	869 (6) 0	0.0815 (3)	
N1	0.40464 (14)	0.4526 (3)) 0.699	942 (11) 0	0.0434 (5)	
N2	0.29337 (19)	0.7082 (5)) 0.684	471 (14) 0	0.0552 (7)	
N3	0.34510 (17)	0.7371 (3)) 0.634	403 (12) 0	0.0423 (5)	
N4	0.45101 (19)	0.0641 (5) 0.821	38 (17) 0	0.0697 (9)	
C1	0.33192 (19)	0.5365 (5)) 0.722	290 (14) 0	0.0514 (8)	
C2	0.41033 (18)	0.5847 (4) 0.642	281 (14) 0	0.0452 (7)	
C3	0.3238 (2)	0.9165 (4) 0.578	381 (14) 0	0.0525 (7)	
C4	0.24236 (19)	0.8540 (4) 0.522	201 (14) 0	0.0468 (7)	
C5	0.4231 (2)	-0.0470 (5) 0.862	203 (17) 0	0.0560 (8)	
H1	0.3114	0.4770	0.762	27 0	0.063*	
H2	0.4535	0.5716	0.614	40 0	0.055*	
H32	0.3118	1.0586	0.602	21 0	0.061*	
H31	0.3748	0.9375	0.555	53 0	0.061*	
H42	0.1926	0.8225	0.546	52 0	0.055*	
H41	0.2275	0.9833	0.489	95 0).055*	
Atomic displ	acement parameters ((A^2)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0450 (2)	0.0382 (2)	0.0481 (3)	0.0000	0.0050 (2)	0.00
S 1	0.0995 (8)	0.0692 (6)	0.0903 (7)	-0.0024 (5)	0.0551 (6)	0.01
N1	0.0409 (11)	0.0462 (11)	0.0422 (11)	-0.0023 (9)	0.0056 (9)	0.00
N2	0.0512 (14)	0.0688 (16)	0.0481 (13)	0.0132 (11)	0.0162 (11)	0.00
N3	0.0425 (12)	0.0445 (12)	0.0383 (11)	-0.0014 (9)	0.0033 (9)	0.00
N4	0.0612 (17)	0.0663 (17)	0.0835 (19)	-0.0009 (13)	0.0181 (14)	0.02
C1	0.0490 (16)	0.0660 (18)	0.0422 (13)	0.0042 (13)	0.0160 (11)	0.00

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	U	U	U	U	U	U
Zn1	0.0450 (2)	0.0382 (2)	0.0481 (3)	0.0000	0.0050 (2)	0.0000
S1	0.0995 (8)	0.0692 (6)	0.0903 (7)	-0.0024 (5)	0.0551 (6)	0.0129 (5)
N1	0.0409 (11)	0.0462 (11)	0.0422 (11)	-0.0023 (9)	0.0056 (9)	0.0020 (9)
N2	0.0512 (14)	0.0688 (16)	0.0481 (13)	0.0132 (11)	0.0162 (11)	0.0018 (11)
N3	0.0425 (12)	0.0445 (12)	0.0383 (11)	-0.0014 (9)	0.0033 (9)	0.0008 (9)
N4	0.0612 (17)	0.0663 (17)	0.0835 (19)	-0.0009 (13)	0.0181 (14)	0.0246 (15)
C1	0.0490 (16)	0.0660 (18)	0.0422 (13)	0.0042 (13)	0.0160 (11)	0.0065 (13)
C2	0.0405 (13)	0.0523 (15)	0.0442 (13)	0.0006 (11)	0.0115 (10)	0.0024 (11)
C3	0.0634 (18)	0.0432 (14)	0.0468 (14)	-0.0039 (13)	0.0001 (12)	0.0039 (12)
C4	0.0507 (15)	0.0426 (14)	0.0440 (12)	0.0090 (11)	0.0012 (11)	-0.0004 (12)
C5	0.0516 (17)	0.0522 (16)	0.0664 (18)	0.0015 (13)	0.0167 (13)	0.0038 (15)
Geometric p	parameters (Å, °)					
Zn1—N1		2.017 (2)	N3—	C3	1.40	66 (3)
Zn1—N1 ⁱ		2.017 (2)	N4—	C5	1.14	43 (4)
Zn1—N4		1.934 (3)	C3—C4		1.51	18 (3)

C4-C4ⁱⁱ

1.934 (3)

1.510 (4)

supplementary materials

S1—C5	1.610 (3)	С1—Н1	0.930	
N1—C1	1.356 (3)	С2—Н2	0.930	
N1—C2	1.330 (3)	С3—Н32	0.970	
N2—N3	1.356 (4)	С3—Н31	0.970	
N2—C1	1.304 (4)	C4—H42	0.970	
N3—C2	1.318 (3)	C4—H41	0.970	
N1—Zn1—N1 ⁱ	102.75 (8)	C3—C4—C4 ⁱⁱ	112.9 (2)	
N1—Zn1—N4	108.35 (10)	S1—C5—N4	177.0 (3)	
N1—Zn1—N4 ⁱ	109.46 (10)	N1—C1—H1	123.0	
N1 ⁱ —Zn1—N4	109.46 (10)	N2—C1—H1	123.0	
N1 ⁱ —Zn1—N4 ⁱ	108.35 (10)	N1—C2—H2	125.4	
N4—Zn1—N4 ⁱ	117.45 (13)	N3—C2—H2	125.4	
Zn1—N1—C1	128.93 (18)	N3—C3—H32	108.9	
Zn1—N1—C2	126.10 (19)	N3—C3—H31	108.9	
C1—N1—C2	103.4 (2)	С4—С3—Н32	108.9	
N3—N2—C1	102.9 (2)	С4—С3—Н31	108.9	
N2—N3—C2	110.5 (2)	H32—C3—H31	109.5	
N2—N3—C3	120.5 (2)	C3—C4—H42	108.6	
C2—N3—C3	129.0 (2)	C3—C4—H41	108.6	
Zn1—N4—C5	176.8 (3)	C4 ⁱⁱ —C4—H42	108.6	
N1—C1—N2	114.0 (2)	C4 ⁱⁱ —C4—H41	108.6	
N1—C2—N3	109.2 (2)	H42—C4—H41	109.5	
N3—C3—C4	111.6 (2)			
N1—Zn1—N1 ⁱ —C1 ⁱ	-93.0 (2)	Zn1—N1—C1—N2	166.49 (19)	
N1—Zn1—N1 ⁱ —C2 ⁱ	70.5 (2)	Zn1—N1—C2—N3	-166.57 (17)	
N1 ⁱ —Zn1—N1—C1	-93.0 (2)	C1—N1—C2—N3	0.3 (2)	
$N1^{i}$ —Zn1—N1—C2	70.5 (2)	C2—N1—C1—N2	0.2 (3)	
N4—Zn1—N1—C1	22.8 (2)	N3—N2—C1—N1	-0.5 (3)	
N4—Zn1—N1—C2	-173.7 (2)	C1—N2—N3—C2	0.7 (3)	
N4 ⁱ —Zn1—N1—C1	152.0 (2)	C1—N2—N3—C3	179.6 (2)	
N4 ⁱ —Zn1—N1—C2	-44.5 (2)	N2—N3—C2—N1	-0.6 (3)	
N4—Zn1—N1 ⁱ —C1 ⁱ	152.0 (2)	N2—N3—C3—C4	-73.6 (3)	
N4—Zn1—N1 ⁱ —C2 ⁱ	-44.5 (2)	C2—N3—C3—C4	105.1 (3)	
$N4^{i}$ —Zn1—N1 ⁱ —C1 ⁱ	22.8 (2)	C3—N3—C2—N1	-179.4 (2)	
$N4^{i}$ —Zn1—N1 ⁱ —C2 ⁱ	-173.7 (2)	N3—C3—C4—C4 ⁱⁱ	-64.9 (3)	
Symmetry codes: (i) $-x+1$, y, $-z+3/2$; (ii) $-x+1/2$, $-y+3/2$, $-z+1$.				

sup-5

